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An analysis is made of the effect of a longitudinal gravity field on two-dimensional 
supercavitating flow past wedges. Under the assumption that the flow is both 
irrotational and incompressible, a non-linear theory is developed for steady flow. 
By utilizing conformal mapping in combination with the Schwarz reflexion 
principle, the mathematical problem is reduced to a three-parameter, non-linear 
integral equation with one constraint. The equation is derived by reflecting the 
flow about the rigid boundaries; the constraint is obtained by requiring the net 
singularity strength inside the cavity-wedge system to be zero. A successive- 
approximation procedure is used to obtain a numerical solution of the integral 
equation. Typical results are presented in graphs and tables, and the results of 
the present work are compared to those of Acosta’s linear theory. 

1. Introduction 
A considerable number of models and analyses have been created to describe 

the cavity flows that occur in the underwater operation of high-speed submarines, 
missiles, and hydrofoil structures. These analyses, almost all of which are based 
on two-dimensional, incompressible, ideal-fluid flow, have in general neglected 
the effect of gravity and surface tension. According to Gilbarg (1960), compari- 
son of widely contrasting cavity models with water-tunnel measurements indi- 
cates that the usual assumptions of free-streamline theory and experiment agree 
for drag and cavity dimensions. Gilbarg also notes that the influence of gravity 
on drag is not clear, but that distortion of cavities due to buoyancy is often 
apparent. Because supercavitation is likely to occur, in water, in the same speed 
range for both large and small bodies, smaller Froude numbers can be expected 
with larger bodies. Thus, while gravity may have little effect on the drag or 
cavity dimensions of small bodies, such as those used in water-tunnel experi- 
ments, the effects of gravity may be important for larger bodies. 

Attempts to include gravity in the analysis of cavity flows have been infrequent 
due in major part to the complexity of the solution. In  linearized analyses, the 
effects of gravity have been successfully included by Parkin (1957), Acosta (1961), 
and Street (1963). The solutions obtained by Parkin and Street applied to trans- 
verse gravity fields and contained approximations in addition to those of the 
linearization. Acosta’s solution for a longitudinal gravity field is exact within 

17 Fluid Mech. 21 



258 Charles W .  Lenau and Robert L. Street 

the framework of linearized theory. In  general, however, one is usually forced 
to deal with some sort of approximate solution which is laborious in nature, or 
to seek an exact solution by an inverse method in order to solve any problem 
which has a free surface in a gravity fleld. New hope has been found, however, 
for the approximate solution in the development of high-speed digital computers 
upon which, indeed, the present work relies. 

In cavity-flow analyses, it  is assumed that the pressure in the cavity is constant 
and the flow field pressure is everywhere greater than the cavity pressure. These 
conditions are satisfied approximately by actual supercavitating flows. Since 
cavitation occurs locally in a fluid field when pressure drops to the vapour 
pressure, the latter condition insures that no cavitation will occur outside the 
cavity zone. For the gravity-free case these conditions become: 

(1) The speed on the cavity streamline is constant. 
(2) The maximum flow field speed occurs on the cavity streamline. 

Condition 2 implies that the cavity is convex as viewed from the fluid field. 
Conditions 1 and 2 present a difficulty if the cavity is to close. Condition 1 
excludes closure with a stagnation point and condition 2 excludes a cusp. When 
gravity is considered, the situation is more complex. First, it  may be possible 
to close a cavity with a stagnation point without violating the constant-pressure 
condition. Furthermore, it is conceivable that a portion of the cavity-free stream- 
line can be concave; thus cusps are not excluded. However, for a flow model to 
be valid over a range of Froude numbers, including infinity, a cusp or stagnation 
point cannot be used for closure. 

The present work deals with a symmetric wedge of arbitrary included angle 
and cavity with gravity acting parallel to the axis of symmetry. The flow model, 
originally used by Geurst (1961) for gravity-free flow, employs a flat plate 
mounted normal to the stream to close the cavity. This model is presumed to 
yield approximately the drag coefficient and cavity dimensions for actual cavity 
flow about a wedge which is rising or descending at constant velocity in an infinite 
fluid at rest, or for the flow of an infinite stream past a stationary wedge with 
gravity acting parallel to the stream. 

2. Problem definition 
The wedge and cavity are shown in figure 1. The co-ordinate system is fixed 

to the wedge in order to obtain a steady-state flow field with the origin at the 
vertex of the wedge. Gravity is considered positive when it acts in the positive 
x-direction. It is assumed that the velocity components (u , v )  are bounded, 
continuous functions of space and that as z --f 00, (u, v) -+ (U,, 0 ) ;  and furthermore, 
that only two stagnation points occur in the flow field, one at the vertex of the 
wedge and the other at the centre of the closure plate. It is assumed that the 
cavity and wedge form a body symmetric about the x-axis and finally, that the 
flow is steady and irrotational and the fluid is incompressible and inviscid. 

It is well known that for any two-dimensional, steady-state, irrotational flow 
of incompressible, inviscid fluid there exists a complex potential W = $ + i4 
whose real and imaginary parts are the potential $ and stream function 4. 
Moreover, W ( z )  will be analytic at each point, not on a boundary, a t  which the 
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velocity components u = ay5jax and v = @lay are continuous. Furthermore, the 
complex velocity d Wldz = u - iv is analytic a t  each point where W ( z )  is analytic. 

The mathematical problem is formulated in terms of analytic function theory. 
Let D be the domain consisting of the lower half plane minus the cavity and 

* 
z-plane 

c 

t-plane 

I 
G-plane 

FIGURE 1. Physical and auxiliary planes. 

wedge so that the boundary .D coincides with the lower branch of the split 
streamline. Let D* be the domain formed by the reflexion of D about the x-axis 
into the upper half plane. It is evident, then, that: 

(1)  For z E D u D*, d Wldz is analytic and single-valued; 
( 2 )  For x EB u B*, d Wldz is bounded and continuous; 
( 3 )  For X E D  u 
(4) Gravity acts parallel to the x-axis; 
(5) AS Z+OO, dW1dz-t  Urn; 
(6) The cavity and wedge form a body symmetric about the x-axis. 

u D* u B*, d Wldz vanishes only at points ( 2 )  and (5); 

17-2 
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The above statements follow from the preceding assumptions. As a result of the 
continuity of the velocity components (u, w), W ( z )  and d Wldz are analytic for 
z E D u D*, and the complex velocity d Wldz must be single-valued for z E D u D* 
because the velocity components are single-valued. 

From the above conditions it can be shown that for a given Froude number 

F2 = P39b, 
and cavitation number 

one and only one solution exists, provided only that the Froude number is 
sufficiently large. The term po is the speed in the velocity field at the point of 
detachment, g is the acceleration of gravity, and b is the base width of the wedge. 
The term PK is the cavity pressure, p is the density of the fluid, and P,, and U, 
are the pressure and velocity in the stream a t  a point far from the wedge but at  
the same x-elevation as the separation points. 

The method used in this work is closely related to that used in Birkhoff & 
Carter’s (1957) treatment of rising plane bubbles and de Boor’s (1961) treatment 
of the sluice gate, and the latter method in turn has many similarities to the 
Levi-Civita method (Birkhoff & Zarantonello 1957 and Milne-Thompson 1961) 
for treating cavity models with curved bodies. 

The symmetry of the present problem allows the solution to be simplified by 
replacing the streamline from points (1) to ( 2 )  and (5) to (1) by a fixed boundary 
and considering only the lower half plane. Thus, the flow field is contained in the 
simply connected domain D. 

As in most (if not all) non-linear solutions to two-dimensional problems with 
free boundaries, the central role is played by 

A convenient domain I? in an auxiliary t-plane is introduced where the complex 
potential W ( z )  and the complex velocity <(z)  are found as functions oft .  The 
above expression may then be written 

and the t and z planes are related by the transformation 

The choice of I‘ is made to simplify the solution as much as possible; indeed, 
this choice allows the fixed boundary to be removed from discussion. The 
domain r is the semicircle I t \  < 1, Im{t> > 0. The free streamline corresponds 
to the arc of the semicircle, and the fixed boundary to its diameter, such that the 
point a t  infinity corresponds to the origin (figure 1). The mapping function 
x = f ( t )  which maps I? on to D will be analytic, single-valued, and univalent for 
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t E I? and continuous for t E r, t $. 0, where F is the boundary of I?. The constants, 
0 i r ;  p < 1 depend on the geometry of the physical plane and are functions of 
Z and F2. 

The approach used is to replace the complex velocity by 

!3) = P(t )  en@, 

where p(tj is a known function and Q ( t )  is an unknown function which is analytic 
in It\ < 1 and real valued for - 1 < t < 1. The function p ( t )  is selected so that 
Q(t )  satisfies these conditions. The two properties of Q(t)  allow it to be repre- 
sented by a power series with real coefficients, which converges for J t J  < 1. 
Since the coefficients are unknown, the power series is truncated to form a 
polynomial with a finite set of unknown coefficients. These coefficients are then 
found by satisfying approximately the constant-pressure condition on the free 
streamline. The solution of the problem will allow computation of the basic 
physical parameters F2,  Zlb, C,, and Z in terms of two independent non-physical 
parameters A* and r,  that are defined later. 

3. Formulation of the integral equation 
From the definition of the auxiliary domain I? and the character of the physical 

and the complex potential planes, it  is possible to establish the functions 

and 

w = W(t) ,  
[ = c(t) = p(t)  en@). 

It is shown in appendix 1 that 

W ( t )  = ,(,,$, 
i.e. the singularity is a doublet in a circle with an unknown strength K ,  and 

For t = eic, 0 ,< (+ ,< T ,  [(t)  will be the conjugate of the free-streamline velocity. 
For the gravity-free case, ][(eiu)l = 1, hence, equation (4) becomes 

or Re{M(eiu)} = 0, Im{iM(eiu)} = 0. 

Moreover, since Q(eiu) = M ( e c i U )  for 0 < v < n, then Im{iQ(ei")) = 0 for 
0 < IT < 27r. The function iM(t) is analytic in It1 < 1, continuous and real-valued 
for (tl = 1. By the reflexion principle, iM( t )  will be analytic in the entire plane 
including the point at infinity. Hence, by the Liouville theorem, iQ(t)  must be 
a constant, and Q(t)  = ic, where c is a real number. But as t --f 0, <(t) --f Um/qo; 
hence, c = 0. Consequently, 

for the gravity-free case. 
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The free streamline in the physical plane corresponds to t = eiu, 0 < n 6 n in 
the t plane. Combining the definitions 

- 213 + cos a( 1 +p2) 

1-2pcosa+p2 +(a)+ia(a) = !2(e iu) ,  O(a) = cos-l ~ 

$(a) = cos-1 

I>\ 
( 5 )  

[ 
~ ( r )  = MV) +~/nv+(a) J 1 + 2r cos cr+ r2 S ’ 2r + cos v( 1 + r2) 

with equation (4) produces 

<(eiu) = exp[-&ni+iA(cr)+is(cr)+q5(a)J. 

Substituting t = eiu into equation (3) gives 

W = ~ K C O S C T .  

Combining this relationship with 
<=--- 1 dWdn 

qo dv d z  
and equation (6) gives 

sinaexp(&ri-Ai-&-$), 
d z ( a )  2K 

da Po 
- __ - -_ 

where z(a) locates a point on the free streamline. The integrated equation is 

z(a)  = ~ e-i8 + sin texp [(in - A - E )  i - $1 d< 
2sinp q,, 

and clearlv. 
“ I  

x(a)  = sin<sin(A+s)e-#d<, ( 7 )  

The speed q(a) at a point on the free streamline is easily found from equation 

(9) (4/Po)2 = <E 
to achieve (q/Po)2 = e2$. (10) 

(6) by using 

For the pressure to be constant along the frse streamline, the proper relation- 
ship between x(a) and q(a), given by Bernoulli’s equation, must be satisfied. 
Writing the Bernoulli equation between (3) and the arbitrary point z(a) on the 
free streamline and assuming gravity to act in the positive x-direction gives, 
after some rearranging, 

Combining (7)  and (10) with the above expression yields 

sin<sin(A+E)e-$d<. 

If the functions q5 and E can be determined from the above equation, the function 
Q(t) will be completely defined since its values on the boundary It1 = 1 will be 
known. Proof of the existence and uniqueness of this solution is given in Lenau 
(1963). 
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4. Relations between the flow parameters and the drag coefficient 
From ( 2 )  and (4) with t = 0 

The parameters p and r are related by requiring the cavity to be closed. 
Expanding the complex velocity into a power series about the point at infinity 
in the z-plane gives 

(13) 
“1 ” { ( z )  = Urn+-+$+ ..., IzI > R. 
% %  

The coefficients are real since C(z) is real-valued for real values of z. Evaluating 
the integral r 

along a closed contour c which encloses the circle IzI = R gives 

&)a% = 27Tidl. fC 
The imaginary part of the above integral is proportional to the net flux of fluid 
flowing out of the contour c (Parkin 1959). Since C(z) has no singularities exterior 
to the cavity and wedge system (by hypothesis), setting a1 = 0 constitutes a 
necessary and sufficient condition for cavity closure. Substituting equation 
(A. 1.2) (appendix 1) into (13) produces 

C(t) = urn+-t+ “1 (%? --__ “lPo)tZ+... 
P-1 P-1 P-1 

and the closure condition becomes 
5‘(0) = 0. 

Performing this operation on equation (4) gives 

Qyo)-2(+)+71(G) 1 l-p p 1- = 0. 

Solving this equation for p gives 

The constant p locates the point (5) in the t-plane and 0 < p < 1. Hence, the 
above equation has meaning only if 

and 

The physical meaning of this inequality and the limitation imposed by it upon 
the solution are discussed later. 
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If the substitution t = - < is made, equation (4) becomes for - 1 < t < - r 

Furthermore, 

and 

Solving for dz/dt  and using (15) produces 

Integrating between points (2) and (3) gives 

Since Iz3- z2]  = +b cscp, 
K = (bq0/21,) cscp  

where 

The drag force D, found by integrating (P - Pk) over the face of the wedge, is 

&b CROP 

0 
(P- Pk)ds2sinp. 

Writing the Bernoulli equation from the point s on the wedge face to the separa- 
tion point, solving for (P- Pk), and combining the above results with (1) gives 

Performing in part the integration yields 

Combining (9) and (15) gives 

therefore 
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If 

equation (19) may be written as 

Combining the above results with (2) and (17) and with 

CD = D/+pUU2,b 

produces c,= ( l + Z )  

the definition 

(21) 

5. Solution of the integral equation 
It has been shown previously that Q(t )  is a continuous function oft for It) = 1. 

Hence, the real and imaginary parts of Q(ei') will be continuous functions of c. 
Equation (1 1) shows, however, that if #(c) and ~ ( c )  are continuous functions 
of g, the right side of the integral equation will have a continuous derivative, 
which implies that #(q) has a continuous derivative. The methods used herein to 
construct solutions to the above integral equation can yield solutions only of 
this class. 

The function Q ( t )  is analytic for It\ < 1 and real-valued for - 1 < t < 1. 
Hence, it may be expanded into a power series about the origin as 

Q ( t )  = a,+a,t+a2t2+ .... 
The coefficients are real numbers since Q(t) is real-valued for real values of t .  

$(cr)+ie(e) = 3 a,cosvc+i 3 a,sinvcr 
For t = eiu m 00 

v=O u= 1 

or 
W W 

#(cr) = 2 a, cos vcr, e(v) = 3 a, sin vc 
u= 0 v = l  

m 

Since $'(c) is continuous, C a, cos V(T will converge uniformly. Moreover, 
W u=o 

3 a,sinvc will also converge uniformly, as is shown in Lenau (1963). 

The integral equation in terms of these expansions becomes 
v = l  

1 W 

exp (2 aVcosvc 
s=o 

Differentiating the above equation and rearranging slightly leads to 

( 2 2 )  
1 

00 m 

2gK e-3a0 sin c sin A + s a, sin i)< exp - 3 s u,, cos vt . 3 va, sin vc = ~- 
W 1 ( u = l  v =  1 q; ( u = l  
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m 

nn, = $Ionsin a sin (A + 2 a, sin va 
v=  1 

where A = 12qKe-3a017rqZ. 

Equation (22 )  may also be written 
m 

m W 

If = c ~ ~ c o s v a ,  
v = l  

the above equation becomes 
m m 

C uCv sin va = 
v =  1 

Solving for Fourier coefficient C, and combining with (24 )  gives 
W 

nC, = Alan sin CT sin (A + 
v = l  

(25)  

Replacing sZ‘(0) by a,  in (14)  produces 

Two successive-approximation procedures have been devised and used to 
construct solutions to ( 1 1 ) .  The first, the simpler of the two, converges slowly 
and has been used only to check the results obtained by the second procedure. 
The second method is more complicated and difficult to use but appears to 
converge rapidly for almost all cases of physical significance. In both methods 
A and r are independent parameters. 

Method I 
For the first successive-approximation procedure, (23 )  is replaced by the 
recursion formula 

1 N N 
a;+l= R In sin a sin (A” + a: sin va exp - 3 2 a, cos u u  sin (ja) d a  

3j 0 v = l  1 ( v = l  

( j =  172 ,3 , . . . ,N )  
where from (5) 

and 

The superscript k denotes the kth approximation of the quantity in question. 
This procedure is initiated by setting a; = 0 for j = 1,2,3,  . .., N and assigning 
values to the parameters A and r .  This procedure is continued until the desired 
accuracy is obtained. 
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Method II 
For this method (26) is replaced by the recursion formula 

1 N 
C:+l = $/nsingsin (Ak+ C aFsinva sin(jv)dv ( j  = 1 , 2 , 3 ,  ...,iV), ( 2 7 )  

3 0  v = 1  

and (23 )  is replaced by the following systems of equations (see appendix 2 )  

and 

e$ = 1, 
1Ck - - k e k  k k k k k k  
H - +el e2 + e2 e3 + ... + eN-lelV, 
$7; = e,ke$+e,ke$+e,ke,k+ +e,_,e,, k k  ... 
................................................ 
LCk = ekek k + ... +e,kef+i+ ... +e$+e,, 
................................................ 

&2$-l = e,kei7-1 + e:e$,, 
1Ck - k k 
2 IV - eoeiv 

e,k = 1, 

e: = e,kbf, 

2eg = 2e,kb$+eFbf, 

3e,k = 3e,k b,k -k 2e: b$ + eg b f , 
........................................................................ I 

je: = je$bjk + ( j  - l)efb:-, + ... + ( j  - i) e$& + .. .ej"_lbf, I 
....................................................................... I 

I Ne$ = Ne,kb$+(N- l ) e :b i  -,+... +e,_,bF, k 

and a: = @: for j = 1 ,2 ,3 ,  ..., N .  

This procedure is initiated, just as in the first method, by setting a! = 0 for 
j = 1 , 2,3,  ... , N and assigning values to A and r .  This allows the set {C;} to be evalu- 
ated, which in turn allows the sets {e;}, {b;}, and {a;} to be evaluated. The set {a;} 
is used to evaluate set (Cg} and the process is repeated. 

The non-linear system of equations defined by (28) is solved by a relaxation 
technique. Residues are defined for the first ( N  - 1) equations such that 

4 = 2&'~-e$e!j-e~e~+l- . . .  - ~ $ - ~ e $  ( , j  = 1 , 2 , 3 ,  ..., N -  1).  

Derivatives are found to be 

ali.,/ae,k = -e&i-ef+i if e: = 0 for j < 0 and j > n. 

The relaxation procedure is initiated by setting e$ = 0 for i = 1 , 2 , 3 ,  .... N - 1, 
e,k = 1 and e$ = +Cg. The maximum residue IFv/ is selected and AeF found from 

q + A e F ( a q / a e % )  = 0. 

Each residue E", is then replaced by &+Ae,k(aE",/aeF). Lastly, e f  is replaced by 
ef + Ae; and the maximum residue is again selected and the process is repeated. 
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It is convenient to introduce a new independent parameter A* which is 
related to A and r by the equation 

A* = A/,,n sin2 a sin A d a .  (30) 

It is seen from (27 )  that 
A* = C,O, 

i.e. A* is the first approximation to the coefficient C,. This parameter essentially 
determines the ratio qr/qo where qe is the free streamline speed at the end of the 
cavity. In fact 

qe/qo exp (%A*). 

This simple relationship derived in Lenau (1963) is based on the observation 
that in most cases of interest: 

( 1 )  The coefficients cf and a: change very little with k ;  
(2) The coefficients c: and a: dominate the higher-order terms in their 

respective series. 
The procedure for obtaining numerical results is now described. Values of 

r and A* are assigned; A is determined from (30), and the integral equation is 
solved by one of the successive-approximation procedures. This determines 
p and a,, for v = 1,2,3, . . ., N .  The lead coefficient a,, can now be determined 
since it is easily shown from the above that 

a, = a,-a,+a,+ ...( - l)N+la,. 131) 

N 

v = o  
Thus Q(t)  = a,tY 

is now completely defined; hence, I, and I, may be evaluated using (18 )  and (20). 
The Froude number is computed by combining (17) and (24). Cavity dimensions 
may be determined by combining ( 1 7 ) ,  (7 ) ,  and (8 ) .  Finally, C may be deter- 
mined from (12 ) ,  and the drag coefficients from (21) .  

All numerical integrations have been accomplished by dividing the interval 
of integration into J even divisions giving J subintervals. The integration was 
then carried out over each subinterval according to the Gauss quadrature 
formula for four divisions (Scarborough 1955). The number of subintervals used 
depended upon the definite integral being evaluated. Those defined in (27) were 
evaluated using 10 subintervals if 10 coefficients aj were to be determined, and 
15 subintervals for 15 coefficients. The definite integrals contained in (18) and 
(20) were evaluated using 15 subintervals. However, since the integrand in (18) 
is singular and therefore unsuited for numerical quadrature, the singularity is 
first removed by integrating by parts. 

The condition of constant pressure on the free streamline is not satisfied 
exactly by the obtained solutions. Hence, a check must be made on the cavity 
streamline speed to see how closely the Bernoulli equation is satisfied. The 
quantity chosen for this measure is 
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where q(r) is the speed that actually occurs on the cavity streamline at  elevation 
x((T),  and qZ(,,) is the speed that should occur here. Writing the Bernoulli equation 
from the separation point to z((T) gives 

Hence, 

29 
40 

1+3(x((T)-+bcotP) = 

7(g)  = 1 - (E)2 (1 + 

Combining the above expressions with (7),  (lo), and (24) gives 

7(fT) = 1- 

v = l  

6. Results and discussion 
Both successive-approximation procedures were used to construct solutions 

to the integral equation. Method 11 was in a11 cases a superior procedure, for it 
converged more rapidly than method I and for a greater range of A*. Table 1 
contains the successive approximations to the coefficients {ai} obtained by both 
methods for A* = 0.75 and r = 0.57. For method I seven iterations were 
needed to stabilize the lead coefficient a, to within 0.04 % of its apparent ultimate 
value. For method I1 four iterations stabilized the lead coefficient to within 
0.004% of the same value. In  general, it  has been found that the number of 
iterations necessary to stabilize the coefficients depends essentially on IA*l, 
with the number of iterations increasing with IA*l until the procedure fails to 
converge. For example, for A* = 2.0 and r = 0.55 method I diverges, whiIe for 
method I1 the lead coefficient stabilized to within 0.03 % of its final value after 
eight iterations. 

Figure 2 is a plot of 7(r) us (T for various values of A* using the coefficients 
obtained by method 11. It is seen that the quantity 

11711 = max IW 
o<u<n 

increases with A*. For 10 coefficients and A* < 1.0, 11711 is less than 0.03 % but 
for A* in excess of 1.0, 117[1 increases rapidly-reaching a value of about 10 % 
for A* = 2.0. This increase in 11711 with A* is apparent in the coefficients obtained. 
For A* = 1.0 the size of the coefficients decreases rapidly, the ratio of the tenth 
to the first being about 0.0005. For A* = 2.0 the first six coefficients are almost 
equal in size and the ratio of the tenth to the first coefficient is about 0.02. For 
15 coefficients the behaviour of 11711 is similar to, but its magnitude is smaller than, 
that obtained with 10 coefficients. For A* = 2.0, 11711 is about one-half that 
obtained by using 10 coefficients. Table 2 contains the computed values of 1 /P ,  
C, co and l/b using 10 and 15 coefficients. For A* = 2-0 these quantities change 
by less than 2 % .  For A* = 1.5 a change of less than 0.6% is obtained. For 
A* = 1.0 these differences have been reduced to less than 0.07 %. It has been 
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found in general that if /A*/ 6 1 and 10 coefficients are used, then 1 1 ~ 1 1  < 0-5 %. 
It has also been found that in almost all cases /A*/ in excess of 1.0 has no physical 
significance. For these reasons 10 coefficients have been used for all computa- 
tions presented in this work. Based on the above and similar results, it  appears 
that these computations are within 0.5 yo of their correct values. 

a1 

0.250000 
0.264300 
0.247039 
0.243561 
0.245026 
0.245468 
0.245346 

- 0.000106 
-0.000218 
- 0'000427 
- 0.000576 
- 0'000556 
- 0'000535 
- 0.000535 

a1 

0.250043 
0.245164 
0.245312 
0.254307 

% 
-00.000317 
- 0.000542 
- 0-000538 
- 0.000538 

a2 

- 0.000262 
- 0.048737 
- 0.050316 
- 0.045405 
- 0.044906 
- 0.045373 
- 0.045452 

a7 

- 0.000108 
- 0,000170 
- 0.000135 
- 0-000078 
- 0'000077 
- 0.000085 
- 0.000086 

a2 
- 0.047006 
-0.045313 
- 0'045406 
- 0'045403 

a7 

- 0'000082 
- 0.000083 
- 0.000083 

0,000014 

a3 

Method I 

- 0.000430 
0.004890 
0.011250 
0.010128 
0.009355 
0.009425 
0.009508 

a8 

- 0'000072 
- 0~000098 
- 0~000120 
- 0-000148 
- 0'000150 
- 0'000147 
- 0.000146 

Method I1 

a3 

0.011376 
0.009439 
0.009500 
0.009498 

a8 
- 0.000054 
- 0'000152 
- 0.000150 
- 0.000150 

a4 

- 0.000163 
-0.001177 
- 0.003750 
- 0'003990 
- 0.003630 
- 0.003578 
- 0.003613 

a0 

- 0.000069 
- 0.000080 
- 0.000080 
- 0.000075 
- 0'000073 
- 0.000074 
- 0.000074 

a 4  

- 0'003268 
- 0.00361 1 
- 0.003617 
- 0'00361 7 

a0 

- 0.000031 
- 0.000063 
- 0*000064 
- 0.000064 

a5 

- 0.000192 
- 0.000345 

0.000339 
0.000616 
0.000519 
0.000476 
0.000483 

a10 

- 0~000051 
- 0.000047 
- 0.000053 
- 0*000060 
- 0.000060 
- 0~000060 
- 0'000060 

a5 

0.000814 
0.000487 
0.000487 
0.000487 

a10 

- 0.000039 
- 0~000088 
- 0-000088 
- 0'000088 

TABLE 1. Successive approximations to the set {aj}  of series coefficients 
obt.ained by using method I and method I1 for r = 0.57, A* = 0.75 

--- 10 coefficients - 15 coefficients 5 -  
s 
v 

-5L I I I t 1 I I I I 1 
;o i', iT :o ;o iT f 

CT (radians) 

FIGURE 2. Pressure error function: ~ ( u )  ?is (T for p = 15"; r = 0.55. 
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It has been shown that the cavity closure condition relates r ,  p, and al, that 
0 < p < 1, and that for this to be true, 

Since 0 < r < 1, no difficulty will occur when a, > 0. However, negative values 
of a, occur with negative values of A*. For a given r ,  A* may be decreased until 

When this occurs p = 1 and the closure plate has vanished. Moreover, equation 
(10) shows that the free-streamline velocity at the end of the cavity has not 
vanished. Examination of equation (4) reveals that the singularity 

[ (P  - t )  (1  -@)I4 

has vanished and a stagnation point no longer occurs a t  the end of the cavity. 
Plots of such cavities reveal that the cavity is terminated by a cusp. As p 

r A* N c C D  1 /P lib 

0.55 2.00 10 -0.8098 -0.7921 1.6278 9.580 
0.55 2.00 15 -0.8234 -0'8053 1.7562 9.559 
0.55 1-50 I0  -0.5948 -0.4404 0-4320 11.691 
0.55 1.50 15 -0.5973 -0.4428 0.4347 11.689 
0.55 1.00 10 -0.3028 -0.1088 0.1239 14.109 
0.55 1.00 15 -0'3027 -0.1087 0'1239 14.109 
0.55 0.50 10 -0.0115 0.1683 0.0322 16.631 
0.55 0.50 15 -0.0114 0.1684 0.0322 16.631 

TABLE 2. Examples of various parameters when p = 15", r = 0.55 

approaches 1 the closure plate decreases in size and the end of the cavity becomes 
pointed. For p = 0.999 the ,cavity shape is almost identical to the cusped 
cavity although it still has a stagnation point at the end of the cavity. Figures 
3 and 4 give two examples of cavity shapes for p close to 1. Examples of cusped 
cavities may be found in figures 5 and 6. For a given value of r ,  a value of A* 
may be found which gives a cusped cavity. This value represents the greatest 
lower bound of A* for which a solution exists to the Geurst model. If A* is 
decreased beyond this point, the integral equation still has a solution but a value 
of p greater than unity will be obtained. Lenau (1963) gives the solution to the 
problem of a cusped-cavity model. 

Figures 7 to 13 illustrate the dependence of Elb and C, on C and F .  The plots 
of l / b  us C (figures 7-10) reveal that l / b  is greatly affected by P. Figure 14  shows 
a number of cavities for E = 0-28. It is seen that positive F2 tend to reduce Ilb 
and to increase the size of the closure plate. Conversely, negative F2 tend to 
increase Zlb and to decrease the size of the closure plate, the limiting case being 
the cusped cavity. For a given negative F2,  X decreases with increasing l /b until 
a minimum value occurs at the cusped cavity. The effect of F2 on C, is illustrated 
by figures 11 and 13. Positive F2 decrease C,, and negative F2 increase it. This 
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0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

FIGURE 3. Cavity shape: p = 15"; p = 0.922. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

FIGURE 4. Cavity shape: /3 = 15";  p = 0.980. 

B = 1.55 B = 1.02 C = 0.82 

1 

FIGURE 5. Cavity shapes for cusped cavities: /3 = 45'. 

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  
FIGURE 6. Cavity shapes for cusped cavities : p = 90". 

Length Ilb 

FIGURE 7. A comparison between the cavitation numbers obtained from Acosta's linear 
theory and those obtained from the non-linear theory for a range of cavity lengths for 
p = 5". 
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is consistent with the direction of the buoyancy force. For negative F2 the 
buoyancy force is in the direction of flow, and conversely, for positive F2 the 
buoyancy force is opposite to the direction offlow. The effect that a given F2 has 

80 -100 
Length Ilb 

FIGURE 8. Cavitation number 0.9 length for p = 15". 

1.0 3 
0.9 - 
0.8 - 

5.1 0 7  
8 0.6 - 
a 0.5 - B 2 0.4 - 
.- 0.3 - 

- 

4 

+2 
cj 
.- 
2 0.2 - 
u 

0.18 
2 3 4 5 6 7 8910 15 20 30 40 506070 90 

80 100 

Length llb 

FIGURE 9. A comparison between the cavitation numbers obtained from Acosta's linear 
theory and those obtained from the non-linear theory for a range of cavity lengths for 
/J' = 15". 

on CD increases with decreasing wedge angles. For a wedge half angle of 45' the 
curves 1/F2 = & 0-01 almost coincide with the gravity-free case. For a wedge 
half angle of 5" the curves 1/F2 = 5 0.01 are substantially displaced from the 
1/F2 = 0 case. 

18 Fluid Merh 21 
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Figures 7 ,  9, 11, and 12 compare the results of Acosta's linear theory and the 
present work. For a wedge half angle of 5', agreement between lib and C, for 
the two theories is good for small C. It is not expected that the two theories 

Length lib 

FIGURE 10. Cavitation number ws length for /I = 45". 

0.8 - 

Acosta's linear theory 
Non-linear theory 

0.2 0.4 0.6 0.8 1.0 . 

Cavitation number C 

FIGURE 11. A comparison between the drag coefficients obtained from Acosta's linear 
theory and those obtained from the non-linear theory for a range of the cavitation number 
for /I = 5". 

should agree elsewhere since first-order C are a basic assumption of linear 
theories. For a wedge angle of 15' the quantitative agreement is poor but the 
curves do agree qualitatively. 

In  Lenau (1963) it is shown that for a given r and A, a solution to the Geurst- 
model problem exists and is unique provided (A1 is sufficiently small. However, 



0 Non-linear theory - 
I I t I I 

375 

FIGURE 12. A comparison between the drag coefficients obtained from Acosta's linear 
theory and those obtained from the non-linear theory for a range of cavitation numbers 
for p = 15". 

I I I I I 

Cavit.at,ion number C 

FIGURE 13. Drag coefficient vs cavit,atjon number for ,8 = 45". 
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it has not been established that for a given F and C, there will be a unique solution. 
Indeed, non-uniqueness is expected since Acosta's linear theory gives, in many 
cases, two solutions for each P2 and C. These solutions may be seen by examining 
figures 7 and 9. For a given negative F2, C decreases with increasing ljb until 

l/F2= 0.133 Em 
Cavitation number Z = 0.28 

0.0514 

0.0166 

0.000 

I I I 

I I I - 0'0051 

- 0.0055 

0 [+=I 2 4 6 ! 8 .I+ 10 12 14 16 18 20 22 24 26 28 I I 
FIGURE 14. Cavity shapes at constant cavitation number for p = 15". 

a miniinum X is reached. Beyond this point C increases with 116 giving a second 
length for each C. Two drag coefficients also occur for each cavitation number, 
as shown in figures 11 and 12. The Geurst model has given no indication of this 
behaviour. It appears from the plots of C us llb (figures 7-10) that for a given 
negative F2 the minimum C occurs at  the cusped cavity. Indeed, the slopes of 
these curves appear to be zero at this point. 

Appendix 1 
In  this appendix we develop the required functions W = W(t) and 5 = { ( t ) .  

Recall that the domain D consists of the lower half of the z-plane minus the 
cavity and wedge while the domain I? is the semicircle It1 < 1, Im{t) > 0. 

Based on the hypotheses made earlier about <(z) ,  it  is shown subsequently 
that the mapping functionf(t) = z ,  which maps the domain I? onto D, exists and 
is continuous for t e  r, t + 0. The complex potential W(z) will be analytic for 
z e D and continuous for z E D. The transformation T = W(z) maps the domain B 
onto the lower half of the T plane with the point at  infinity going into the point 
at  infinity. The function W ( z )  is univalent; hence, it has an inverse W-I(T) = z 
which is continuous for real values of T .  A linear transformation of the form 

T = ZGK+B 
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will map the lower half of the T plane on to the lower half of the G plane, the 
point at infinity mapping into the point at  infinity. The choice of the appropriate 
constants K and B causes points (3) and (4) to map into - 1 and 1, respectively. 
The function G = $[t + t-l] maps I' onto the lower half of the G plane such that 
points 1,  0, - 1 map into points 1, GO, - 1 respectively. Hence, 

2 = W-l[K(t + t-1) + B] 

which is continuous for t E r, t + 0, maps I? on to D in the same manner asf(t). 
According to the fundamental theorems of conformal mapping, this function 
must be unique; hence, f ( t )  = W-I[K(t + t-l) + B],  thus establishing that f ( t )  is 
continuous for t E fi, t + 0. Moreover, 

W [ f ( t ) ]  = [K(t+t- ')+B]. 

Setting B = 0 and denoting W[f( t ) ]  by F(t) in the above equation produces 

W ( t )  = K(t+t - l ) .  (A. 1.1) 

The singularity then is a doublet in a circle with an unknown strength K .  
It is instructive to examine the function l / f ( t )  in the domain It1 < 6, 

0 < 6 < min (r,p). This function is analytic for It] < 6, Im it> > 0 and continuous 
and real-valued for - 6 < t < S (taking the value zero a t  t = 0) .  Thus, it follows 
from the Schwarz reflexion principle (Nehari 1952) that l / f ( t )  is analytic for 
It1 < 6. Moreover, l/f(t) has a non-vanishing derivative at  t = 0 because it maps 
conformally at  this point. If l / f ( t )  is expanded into a power series about zero, 
then 

It is seen that f ( t )  has a simple pole at  t = 0 and may be written 

l / f ( t )  = t(a,+a,t+a,t2+ ... ) (a, =k 0). 

f ( t )  = B-& + P o  + Plt + . . . , (A. 1.2) 

where the coefficients are real. 
A knowledge of the singularities of x = f (t) at  t = p and t = - r is necessary in 

order to determine the singularities of C;(t) at these points. The singularity can 
be determined for the point t = - r by considering f ( t )  in the domain 

A:  {It+rl < S, Im{t} > 0);O < S < min(r, 1 - r ) .  

The image domain in the x-plane will have as a part of its boundary two straight- 
line segments which intersect at z = 0 and correspond to -6 < t + r < S in the 
t-plane. Hence, 

will be analytic for t e A  and continuous and real-valued for -S < r + t  < 6 
(Nehari 1952). Thus, by the reflexion principle h(t) is analytic in lt+rl < S. 
Moreover, h(t) possesses a non-vanishing derivative at t = - r  since it maps 
conformally here. After h(t) is expanded into a power series about the point 
t = - r  

The above equation may be solved forf(t), producing 

h(t) = (eniz)li[l-(P/n) 1 = eni 1/[1-(/WI [ f ( t ) l  

h(t) = [eny(t)]ll[l-(flin)l = (t+r) [yl+yz(t+r)+y,(t+r) 2 . . . ]  (yl + 0). 

co 1-p/. 

f ( t )  = e-"i(t + r)l-bln [ 2 y,(t + r)lj-1] = e -n i ( t+y) l -Dinp  I@). 
V = l  
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Since 3 yu(t + r)”--l does not vanish at t = - r,  Fl(t) will be analytic at this point. 

Differentiating the above expression and collecting terms yields 

m 

u = l  

f ’ ( t )  = e-niF2(t)/(t + r)Bjn, (A. 1.3) 

where K?(t) = IF;@) (t+r)f(1-/3/~)F,(t)l .  
The function F2(t) will be analytic and non-vanishing for t = - r  provided 
p/7r < 1.  By a similar argument f’(t) is found to be 

f ’ ( t )  = e-niF3(t)/(t -p )h ,  (A. 1.4) 

The function w ( t )  = log(~[f(t)]) will be analytic for t e F  and continuous for 
except a t  the stagnation points where C [ f ( t ) ]  vanishes. The nature of these 

where F3(t) is analytic and non-vanishing at t = p. 

t E 
singularities is determined by combining (A. 1.1)) (A. 1.3), and (A. 1.4) with 

(A. 1.5) I Hence, 

and 

near t = - r ,  

near t = p, 
w ( t )  = (pin) log (t+ r )  + F5(t) 

w( t )  = slog (t -p) + &(t) 

where 

and 

F&) = log - 1 -- -logF2(t)+7ri, 

F,(t) = log - 1 -- -logF3(t) +ni 

[a 31 
[: ( 21 

are analytic at the point in question because F2(t) and F3(t) are analytic and non- 
vanishing here. From an examination of w(t)  for real values to t, it  follows that 

(A. 1.6) i 
Im(w(t)} = - Qn 
Im{w(t)} = 0 

Im{w(t)} = ,d 

(p < t < l ) ,  

( - r  < t < p), 
( -  1 < t < - r ) .  

In view of (A. 1.6) 

Q(t)  = w(t) - (pin) log ( r  + t )  - 8 log (t -p) + +rri + (Pin-) log (1 + r t )  + + log (1 -p t )  
(A. 1.7) 

and continuous for t E r. The choice of the proper branches of is analytic for t E 
the logarithm functions in combination with (A. 1.5) produces 

Im{Q(t)} = -Qn++n = 0 

Im{a(t)} = - & 7 r + i 7 r  = 0 

Im(Q(t)) = P-p = 0 

( p  < t < l), 

( - r  < t < p), 
( -  1 < t < - r ) .  

By the Schwarz reflexion principle, Q(t ) ,  which is real-valued for - 1 < t < 1, 
may be continued analytically across the real axis into the reflexion of I?. Hence, 
Q(t)  is analytic in It1 < 1 and continuous in It1 = 1. Rearranging (A. 1.7)  and 
using 

C(t) = ew(l) 

produces (A. 1.8) 
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Appendix 2 
In  this Appendix we derive the equation sets (28) and (29 )  that are used in 

iiumerical method 11. These sets, which relate the coefficient sets {C$> {af}, evolve 
from the relationship 

exp ( 5 bvtv) = C e,tU = U(t ) .  (A. 2.1) 

The coefficient set {by}  is related to the coefficient set {e,,} by Taylor’s formula, i.e. 

e, = U“)(O)/N!. (A. 2.2)  

W 

u = l  v = O  

Derivatives of U ( t )  are given by (Dwight 1961) 

where 

Combining this relationship with the above expression and setting t = 0 gives 

(A. 1.3) 

where gck)(0) = bk+,(k+ I ) ! .  

Combining this expression with (A. 1.2) and (A. 2.3) produces 
I; 

i = O  
(k+l)e,+,= ~ e i b k . - ~ + l ( k - i + l )  for k = 0 , 1 , 2 , 3  ,.... 

Clearly, e, = U ( 0 )  = 1. Substituting t = eiu in (A. 2.1)  gives 
00 

i‘J(eiu) = C e,,eivg = exp ( 5 bueivu) . 
w = o  v = l  

Forming the product U(eiu) U(eciU) produces 

+ 2(e,e2 + e1e3 + e2e4 + . . .) cos 2a + . .. + 2(e,e, + elen-,, + . . .) cos na + . . . . 
Hence, by setting 

Zb,, = 3av for v = 1 ,2 ,3 ,  ... 

and Cw = 2 2 eie,,, 

a relationship between {e,) and {a,,} is established. I n  summary these equations 
are 

Cj = 2 C eiei+j for j = 1 ,2 ,3 ,  ..., 

e, = 1, 
i 

i=O 

W 

i = O  

m 

i=O 

( j  + l)ej+l = eibj-i+l(j - i + 1)  for j = 0 ,1 ,2 ,  ..., 

2bj = 3aj for j = 1,2,3? .... 
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Adding superscripts and truncating these infinite series at  N terms gives (28) 
and (29). It is clear that ( 2 5 )  is satisfied exactly only for N = 00. 
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